Copied to
clipboard

G = C22xC8order 32 = 25

Abelian group of type [2,2,8]

direct product, p-group, abelian, monomial

Aliases: C22xC8, SmallGroup(32,36)

Series: Derived Chief Lower central Upper central Jennings

C1 — C22xC8
C1C2C4C2xC4C22xC4 — C22xC8
C1 — C22xC8
C1 — C22xC8
C1C2C2C4 — C22xC8

Generators and relations for C22xC8
 G = < a,b,c | a2=b2=c8=1, ab=ba, ac=ca, bc=cb >

Subgroups: 38, all normal (6 characteristic)
Quotients: C1, C2, C4, C22, C8, C2xC4, C23, C2xC8, C22xC4, C22xC8

Smallest permutation representation of C22xC8
Regular action on 32 points
Generators in S32
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;

G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])

C22xC8 is a maximal subgroup of
C22.7C42  C22.4Q16  C4.C42  C22:C16  C8o2M4(2)  (C22xC8):C2  C23.24D4  C42.6C22  C23.25D4  C8:9D4  C8:8D4  C8:7D4  C8.18D4
C22xC8 is a maximal quotient of
C42.12C4  D4oC16

32 conjugacy classes

class 1 2A···2G4A···4H8A···8P
order12···24···48···8
size11···11···11···1

32 irreducible representations

dim111111
type+++
imageC1C2C2C4C4C8
kernelC22xC8C2xC8C22xC4C2xC4C23C22
# reps1616216

Matrix representation of C22xC8 in GL3(F17) generated by

100
0160
001
,
100
0160
0016
,
200
020
0013
G:=sub<GL(3,GF(17))| [1,0,0,0,16,0,0,0,1],[1,0,0,0,16,0,0,0,16],[2,0,0,0,2,0,0,0,13] >;

C22xC8 in GAP, Magma, Sage, TeX

C_2^2\times C_8
% in TeX

G:=Group("C2^2xC8");
// GroupNames label

G:=SmallGroup(32,36);
// by ID

G=gap.SmallGroup(32,36);
# by ID

G:=PCGroup([5,-2,2,2,-2,-2,40,58]);
// Polycyclic

G:=Group<a,b,c|a^2=b^2=c^8=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations

Export

Subgroup lattice of C22xC8 in TeX

׿
x
:
Z
F
o
wr
Q
<