direct product, p-group, abelian, monomial
Aliases: C22×C8, SmallGroup(32,36)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22×C8 |
C1 — C22×C8 |
C1 — C22×C8 |
Generators and relations for C22×C8
G = < a,b,c | a2=b2=c8=1, ab=ba, ac=ca, bc=cb >
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
C22×C8 is a maximal subgroup of
C22.7C42 C22.4Q16 C4.C42 C22⋊C16 C8○2M4(2) (C22×C8)⋊C2 C23.24D4 C42.6C22 C23.25D4 C8⋊9D4 C8⋊8D4 C8⋊7D4 C8.18D4
C22×C8 is a maximal quotient of
C42.12C4 D4○C16
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||
image | C1 | C2 | C2 | C4 | C4 | C8 |
kernel | C22×C8 | C2×C8 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 6 | 1 | 6 | 2 | 16 |
Matrix representation of C22×C8 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
2 | 0 | 0 |
0 | 2 | 0 |
0 | 0 | 13 |
G:=sub<GL(3,GF(17))| [1,0,0,0,16,0,0,0,1],[1,0,0,0,16,0,0,0,16],[2,0,0,0,2,0,0,0,13] >;
C22×C8 in GAP, Magma, Sage, TeX
C_2^2\times C_8
% in TeX
G:=Group("C2^2xC8");
// GroupNames label
G:=SmallGroup(32,36);
// by ID
G=gap.SmallGroup(32,36);
# by ID
G:=PCGroup([5,-2,2,2,-2,-2,40,58]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^8=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export